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ABSTRACT 

Given a family of local systems on a punctured Riemann sphere, with 
moving singularities, its first parabolic cohomology is a local system on 
the base space. We study this situation from different points of view. For 
instance, we derive universal formulas for the monodromy of the resulting 
local system. We use a particular example of our construction to prove 
that the simple groups PSL2 (p~) admit regular realizations over the field 
Q(t) for primes p ~ 1, 4,16 mod 21. 

Introduction 

Local systems on the punc tu red  Riemann  sphere arise in various branches of 

mathemat ics  and have been intensively studied (see Section 1 for the definition 

of  a local sys tem and  [5], [16]). One way to  produce  such local systems with 

interesting propert ies is the following. Suppose we are given a family )}s of local 

systems on the punc tured  sphere with moving singularities, parameter ized by 

some base space S. More precisely, let D C F1 x S be a smooth  relative divisor 

and let V be a local sys tem on U :=  F1 x S - D.  Let ~: F1 x S -+ S denote  the 
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second projection and j: U ~ p1 • S the canonical inclusion. Then the first 

higher direct image sheaf 

W := Rl~r.(j.1;) 

is a local system on S, whose stalk at a point s C S is the first parabolic 

cohomology group of the local system 1;s, the restriction of 1; to the fiber Us := 

z~-l(s). Choose a base point so E S and set 1;0 := 1;s0. We call 1; a va r i a t i on  

of the local system 1;0 over the base S and W the first parabolic cohomology of 

the variation 1;. 

A special case of this construction is the mi d d l e  convo lu t ion  studied by 

N. Katz in [16] and by Dettweiler and Reiter in [11]. Starting with some local 

system l;0 on the punctured Riemann sphere Uo, one constructs a variation of 

local systems over the base U0 by twisting 1;0 with a one-dimensional system with 

two singularities, one of which is moving over all points of U0. The parabolic 

cohomology of this variation gives rise to a local system on U0, called the m i d d l e  

convo lu t i on  of 1;0. In [16], Katz proves that  all rigid local systems can be 

constructed from one-dimensional systems by successive application of middle 

convolution and 'scaling'. 

A local system on the punctured Riemann sphere corresponds to an r-tuple 

of invertible matrices g = (g l , . . . , g r )  e GL~(C) r. Vblklein [26] and, indepen- 

dently, Dettweiler and Reiter [10] have defined an operation g ~-~ g on tuples 

of invertible matrices over any field K corresponding to the middle convolution 

(in [26], it is called the b r a i d  c o m p a n i o n  func tor ) .  The definition of this 

operation needs only simple linear algebra. Therefore, the tuple ~ can be easily 

computed, whereas in the original work of Katz the matrices ~i are computed 

only up to conjugation in GLm. This construction has had many applications 

to the Regular Inverse Galois Problem; see, e.g., [26] and [10] 

The goal of the present paper is to study the parabolic cohomology of an 

arbitrary variation of local systems (see the beginning of this introduction), 

both from an analytic and from an arithmetic point of view. 

In the first part of our paper, we treat the analytic aspect, i.e. we use singular 

cohomology. Given a variation 1; of local systems over a base S, we present 

an effective method to compute the monodromy representation of 7rl (S) on the 

parabolic cohomology of 1;. The result depends on the tuple of matrices cor- 

responding to the fibers of the variation 1;, and on the map from zq(S) to the 

Hurwitz braid group which describes how the singularities of these fibres move 

around on p1. Formally, our method is a straightforward extension of Vblklein's 

braid companion functor. Apart from the greater generality, the main difference 



Vol. 156, 2006 LOCAL SYSTEMS 159 

to Vblklein's approach is that we provide a cohomological interpretation of our 

computation. Such an interpretation has the advantage that it makes it very 

easy, using comparison theorems, to translate results from one world into an- 

other. For instance, one can use topological methods to compute the geometric 

monodromy of an @tale local system. 

To illustrate this, we give an example which is concerned with the Regular 

Inverse Galois Problem. We use a Hurwitz family which arises from the Klein 

group of order 168 to construct a variation of local systems over the underlying 

Hurwitz curve. This Hurwitz curve turns out to be the projective line over 

Q with 17 points removed. The parabolic cohomology of this variation then 

gives rise to a family of two-dimensional Galois representations of the algebraic 

fundamental group of this punctured projective line. Using reduction modulo 

p, we obtain the following result: 

THEOREM: The simple group PSL2(p 2) admits a regular realization as Galois 

group over Q(t), for a11 primes p ~ 1, 4, 16 mod 21. 

The only other cases where the group PSL2(p 2) is known to admit a regular 

realization over Q(t) are for p ~ •  by a result of Feit [12], and for 

p ~ =kl mod 24, by a result of Shiina [22], [23] (see also [18], [7] and [27]). 

If q < n, then one knows that the group PSp2n(q) occurs regularly over Q(t); 

see [24] and [10]. Similar bounds exist also for other classical groups. On the 

other hand, experience shows that it is much harder to realize classical groups 

of small Lie rank. The realizations of PSL2(p 2) in the above theorem all come 

from one particular variation of local systems. It is very likely that, by choosing 

different variations, one can realize many more series of classical groups of small 

rank. We have chosen one particular example leading to the above theorem, 

because the case of rank one seems to us the hardest case. 

ACKNOWLEDGEMENT: The first author would like to thank the School of 

Mathematics of Tel Aviv University for their hospitality during his stay in spring 

2003, especially M. Jarden and D. Haran. Both authors acknowledge the finan- 

cial support provided through the European Community's Human Potential 

Program under contract HPRN-CT-2000-00114, GTEM. 

1. Parabolic cohomology 

We study the first parabolic cohomology of a local system on the punctured 

sphere. In particular, we show that it is isomorphic to a certain module Wg, 

defined in [26]. 
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1.1. Let X be a connected and locally contractible topological space. Let R 

be a commutative ring with unit. A local s y s t e m  of R-modules on X is a 

locally constant sheaf V on X whose stalks are free R-modules of finite rank. 

We denote by ]3x the stalk of V at a point x E X. If f :  Y ~ X is a continuous 

map, then Y/denotes  the group of global sections of the sheaf f*V. Note that  

if Y is simply connected, then the natural morphism 

is an isomorphism, for all y C Y. Therefore, a path a: [0, 1] ~ X gives rise to 

an isomorphism 

~(0)  ~ '  Y~(1), 

obtained as the composition of the isomorphisms ]~(0) ~ ~ and ])~ -- ~(1) .  

The image of v E Pa(0) under the above isomorphism is denoted by v s. It only 

depends on the homotopy class of a. 

Let us fix a base point x0 E X and set V := Vxo. We let elements of GL(V) 

act on V from the right. Then the map 

p: ~h(X,  xo) , GL(V), 

defined by v �9 p(a)  := v ~, is a group homomorphism, i.e. a representation of 

~I(X, x0). It is a standard fact that  the functor Y ~ V := Yxo is an equivalence 

of categories between local systems on X and representations of 7h (X, x0). 

1.2. Let X be a compact (topological) surface of genus 0 and D C X a subset 

of cardinality r. We set U := X - D .  There exists a homeomorphism t~ : X ~ P~ 

between X and the Riemann sphere which maps the set D to the real line 

C P~:. Such a homeomorphism is called a m a r k i n g  of (X, D). 

Let us, for the moment, identify X with P~ using the marking ~. Write 

D = { x l , . . .  ,xr} with xl < x2 < ".. < xr and choose a base point xo E U lying 

in the upper half plane. There is a standard presentation 

(1) 7[l(U, x0) = ( o l l , . . .  ,o~ r I I I o l i  : 1) 
i 

of the fundamental group of U, depending only on ~. The generators ai  are 

generated by a simple closed loop which intersects the real line exactly twice, 

first the interval (Xi-1, Xi), then the interval (x~, Xi+I). 

Let ~ be a local system of R-modules on U, corresponding to a representation 

p: r l (U,  x0) - ,  GL(V). For i -- 1 , . . .  , r ,  set gi := p(ai )  E GL(V). Then we 
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have 
r 

-Ig~ = 1. 
i = l  

Conversely, given a free R-module V of finite rank and a tuple g = (g l , . . .  ,gr) 

of elements of GL(V) satisfying the above relation, we obtain a local system ]; 

which induces the tuple g, as above. 

1.3. We continue with the notation introduced in the previous subsection. Let 

j:  U r X denote the inclusion. The pa rabo l i c  c o h o m o l o g y  of )2 is defined 

as the sheaf cohomology of j ,V,  and is written as 

H~(U,)2) := Hn(x , j .V ) .  

We have natural morphisms H~(U,V) --+ H;(U,V)  and Hp(U,V) ~ Hn(u ,v )  
(He denotes cohomology with compact support). 

PROPOSITION 1.1: 

(i) The group Hn(U, V) is canonically isomorphic to the group cohomology 

Hn(zCl(U, Xo), Y). In particular, we have 

H~ ~ V(91 ..... g~) 
and H n (U, V) = 0 for n > 1. 

(ii) The map Hcl(U,)}) --+ Hlp(U,~ ;) is surjective and the map HI(u,~)) --* 

Hi(U, V) is injective. In other words, Hip(U, V) is the image of the 
cohomology with compact support in H 1 (U, V). 

Proof'. Part (i) follows from the Hochschild-Serre spectral sequence and the 

fact that  the universal cover of U is contractible. For (ii), see e.g. [17], Lemma 

5.3. | 

Let ~: 7h(U) --* V be a 1-cocycle, i.e. we have 5(a/3) = ~(a).  p(f l )+ 5(fl). Set 

vi := 5(a~). It is clear that  the tuple (vi) is subject to the relation 

(2) vl " g 2 . . ' g r  +v2"  g 3 " " g r  + ' "  +v~ = 0. 

Conversely, any tuple (vi) satisfying (2) gives rise to a unique 1-cocycle 6. This 

cocycle is a coboundary if and only if there exists v E V such that  vi = v. (gi - 1) 

for all i. By Proposition 1.1 there is a natural inclusion 

H 1 (U, V) ~-~ H 1 (lrl (V), V). 

We say that  5 is a pa rabo l i c  1-cocycle if the class of 5 in HI(~h(U), V) lies in 

the image of Hp I (U, V). 
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LEMMA 1.2: The 1-coeycle ~ is parabolic i f  and only i f  v~ lies in the image of  

gi - 1, for ali i. 

Proof'. Let Ui C X be pairwise disjoint disks with center xi,  and set Ui* := 

Ui - {x~}. We have a long exact sequence 

(3) . . .  - ,  H2 (U , (j V)lv ) Hn(U , (j V)lv ) Hn(U; ,Vlv: )  

Given a class c in Hn(Ui ,  (j!`9)lu~) we can find a smaller disk U~ C Ui with center 

z~ such that  the restriction of c to U~ vanishes (one way to see this is to use 

Cech cohomology). On the other hand, the cohomology groups H ~ (U i, (j!`9)lu~) x i  

and g~(u~,`gls;) do not change if we shrink the disk Ui. Therefore, by the 

exactness of (3) we have Hn(Ui ,  (J!`9)[g~) -- 0 and hence 

Ker(gi - 1), n = 1, 
(4) H~x~(Ui, (j!`9)[u~) ~- Hn- I (U[ , `9[U; )  ~ Coker(gi - 1), n = 2, 

0, otherwise. 

H n - l l U  , )2 ~ ~,o n - 1  * For the second isomorphism we have used t i ,  Iu;J = H (Trl(U~), V). 

Consider the long exact sequence 

(5) . . .  ~ g~) (X , j ! `9 )  -~ H 2 ( U  , `9) ~ Hn(U,  "9) ---*... .  

By (4), the image in H ~ ( X , j ! ` 9 )  of the class of a 1-cocycle ~ : 7rl(U) ~ V 

vanishes if and only if v~ := ~(c~) C Im(g~ - 1). The lemma follows now from 

the exactness of (5) and from Proposition 1.1 (ii). | 

The preceding lemma shows that  the association ~ ~ (vi) yields an 

isomorphism 
HIp(U,`9) ~ Wg := H g / E g ,  

where 

g g  : =  {(Vl,.--, Vr)]Vi  �9 Im(gi - 1), relation (2) holds} 

and 

Eg :-- { ( v . ( g l -  1 ) , . . . , v .  ( g r -  1 ) ) Iv  e V}. 

The R-module Wg has already been defined in [26], where it is called the b r a i d  

companion of V. 

Remark 1.3: Suppose that  R --= K is a field and that  the stabilizer V ~l(U) 

is trivial. Then the Ogg-Shafarevic formula implies the following dimension 

formula: 
r 

dimK HI(U,  V) = (r - 2) dimK V - ~ dimK Ker(gi - 1). 
i = l  
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This formula can also be verified directly using the isomorphism Hp 1 (U, V) ~ Wg. 

2. Variat ion of  a local sys tem 

We study variations of local systems on the punctured sphere, with moving 

singularities. The main result is the computation of the monodromy of the 

parabolic cohomology of the variation. This computation is based on a natural 

generalization of results of VSlklein [25], [26]. 

2.1. Let S be a connected complex manifold, and r _> 3. An r - c o n f i g u r a t i o n  

over S consists of a smooth and proper morphism ~: X --+ S of complex man- 

ifolds together with a smooth relative divisor D C X such that  the following 

holds. For all s E S the fiber Xs := # - l ( s )  is a Riemann surface of genus 0, 

and the divisor D n Xs consists of r pairwise distinct points x l , . . . ,  x~. 

Let us fix an r-configuration (X, D) over S. We set U := X - D and denote 

by j:  U ~-+ X the natural inclusion. Also, we write ~: U --+ S for the natural 

projection. Choose a base point so C S and set X0 := ~- l ( s0)  and Do := XonD. 
Write Do = {Xl , . . .  ,x~} and U0 := X0 - Do = ~- l (s0) .  Choose a base point 

x0 E U0. The projection n: U --+ S is a topological fibration and yields a short 

exact sequence 

(6) xo) , so) ,1 .  

From now on, we shall drop the base points from our notation. Let V0 

be a local system of R-modules on U0, corresponding to a representation 

po: 7rl(U0) --* GL(V), as in w 

Definition 2.1: A variat ion of V0 over S is a local system Y of R-modules on 

U whose restriction to U0 is identified with P0. The p a r a b o l i c  c o h o m o l o g y  

of a variation V is the higher direct image sheaf 

W := Rl~r,(j,Y). 

A variation ~ of P0 corresponds to a representation p: ~1 (U) -~ GL(V) whose 

restriction to 71" 1 (V0) is equal to P0. By definition, the parabolic cohomology 142 

of the variation 12 is a sheaf of R-modules on S. Locally on S, the configuration 

(X, D) is topologically trivial, i.e. there exists a homeomorphism X ~ X0 x S 

which maps D to Do x S. It follows immediately that  W is a local system with 

fibre 

W := H (Uo,Vo). 
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In other words, )4; corresponds to a representation ~: zq(S) --+ GL(W). The 

following lemma provides a description of ~ in terms of cocycles. 

LEMMA 2.2: Let/3 E 711(S) and 5: 71"l(U0) ~ V be a parabolic 1-cocycle. We 

write [6] for the class of 5 in W.  Let f l e  7rl(U) be a lift of~3. Then [5]n(~) = [5'], 

where 5': zq(Uo) ---* V is the 1-cocycle 

, 

Proof: We consider fl as a continuous map fl: I := [0, 1] ~ S. Since I is simply 

connected, there exists a continuous family of homeomorphisms Ct: Xo ~ Xt  := 

~- l ( t ) ,  for t C I, such that Ct(Do) = Dt := Xt  A D and such that r is the 

identity. Let Ct denote the restriction of Ct to Uo. Note that r Uo --% Uo 

is a homeomorphism of U0 with itself, whose homotopy class depends only on 

fl E zq(S). We may further assume that r = xo. Then ~: t ~ Ct(xo) 

is a closed path in U with base point x0. The class of/~ in ~rl(U) (which we 

also denote by/~) is a lift of fl E 7rl (S). By the definition of Ct we have, for all 

a C 7h(U0), the equality 

(7)  = 

Since • is a local system on U, there exists a unique continuous family Ct: ~o ~ 

r of isomorphisms of local systems on Uo such that r is the identity on 

~0. Evaluation of Ct at the point/~(t) = Ct(x0) yields a continuous family of 

isomorphism Ct(Xo): V --% V3(t). This family corresponds to a trivialization of 

/~*~, and we get 

(8)  p ( 3 ) = r  

The pair (r Ct) induces a continuous family of isomorphisms 

Using (7) and (8), one finds that )q([5]) = [~'], where 

= = p ( 3 ) .  

By definition of the representation ~/, we have [6] n(~) -- )q([6]) = [5']. This 

completes the proof of the lemma. | 



Vol. 156, 2006 LOCAL SYSTEMS 165 

Remark 2.3: With the notation introduced above, let ~;o be the local system 

of R-modules, corresponding to a representation P0: ~l(Uo) ~ GL(V). 

(1) A necessary condition for the existence of a variation of V0 over S is 

the following. For every element /~ E ~l(U, xo) there exists an element 

g E GL(V) such that  

= gpo( )g 

(2) 

(3) 

holds for all a E ~l(U0). 

Suppose that  S is a smooth affine curve, and that  (i) holds. Then there 

exists a variation V of ];o over S. This follows easily from the fact that  

~rl (S) is a free group. 

Suppose, moreover, that  R is an integral domain and that  ])o is irreducible. 

If ) /  is another variation of ~;o over S, then there exists a local system 

s of rank one on S such that  P' ~ ]; | 7r*s Let W (resp. W') denote 

the parabolic cohomology of ~; (resp. of Y'). By the projection formula 

we have 

142' ~- R I ~ . ( j , ' P  | ~*l:) -~ 14; | s  

Therefore, the projective representation associated to l/Y, 

~: 7rl(S ) > P G L ( W ) ,  

is uniquely determined by V0. 

2.2 THE ARTIN BRAID GROUP AND THE COCYCLES (I)(g,~).  Let Do C C be a 

set of r distinct complex numbers and set Uo := F~ - Do. We choose a marking 

of (IP~, Do) which maps c~ into the upper half plane; see w The choice of 

induces a presentation of ~l(Uo, co), with generators a l , . . . ,  c~r and relation 

r I i  Cgi ~- 1. 

Let 

(gr := {D C C lIDI = r} 

denote the set of all subsets of C of cardinality r. There is a standard way 

to identify Or with the complement in C r of the 'discriminant locus': given 

D E Or, the corresponding point in C r is ( c l , . . . ,  cr), where X r + c l X  r -1  + 

�9 " + Cr = 1--LED ( X  - z).  The fundamental group Ar := ul (Or, Do) is called the 

A r t i n  b r a i d  g r o u p  on r strands. The group Ar has r - 1 standard generators 

/31,.. . ,  f~r-1 with relations 
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for 1 < i < r and i < j - 1 < r - 1. The element/3i is represented by the path 

t ~  { X l , . . . , 5 ~ ( t ) , 5 + ( t ) , . . . , x r } ,  where 5 + (resp. 5~-)is a path from Xi+l to 

xi through the inverse image under n of the upper half plane (resp. from xi to 

xi+l through the inverse image of the lower half plane). 

Define 

Or,1 := { ( D , x ) [ D e O ~ , x E I ? ~ - D } .  

The natural projection Or,1 --* Or is a topological fibration with fiber Uo, and 

admits a section D H (D, ec). It yields a split exact sequence of fundamental 

groups 

(9) 1 --* zrl (U0, co) ~ "El(Or, l, (Do, oc)) ~ Ar -~ 1. 

We may identify Ar with its image in 71"l(Or,1) under the splitting induced from 

the section D H (D, co). Then Ar acts, by conjugation, on 7rl(U0, co). We have 

the following well-known formulas for this action: 

{ o~io~i+lO~i -1, for j = i, 
(10) /3:(-laj/3i = ai,  for j = i + 1, 

a j,  otherwise. 

Let R be a commutative ring and V a free R-module of finite rank. Define 

~r :-- {g = (g l , . . . , g r )  lgi e G L ( V ) , I I g i  -- 1}. 
i 

An element g C Er corresponds to a representation P0: 7rl(U0) ~ GL(V) (set 

po(ai) := gi) and hence to a local system V0 on U0. Given/3 E At, we set 

(11) pZo(a ) := p0(/3a/3 -1) 

and call the local system ~o z corresponding to the representation p0 ~ the tw i s t  of 

V0 by/3. We denote by g~ the element of Sr corresponding to p0 ~. This defines 

an action of Ar on St, from the right. From (10), we get the following formula 

for the effect of the standard generators/3i on St: 

(12) gZ~ (gl, -1 . . . .  ,gi+l,gi+lg~g~+l,... ,gr). 

Given g c Cr, we have defined in w the R-module 

Hg = {(Vl , . . . ,  vr) lv~ E Im(gi - 1), relation (2) holds}. 

An element (v l , . . . ,  vr) E Hg corresponds to a parabolic 1-cocycle 5: 7rl (U0) --* 

V, determined by 5(ai) = vi, for i = 1 , . . . ,  r. Here the 7rl(U0)-module structure 
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on V is induced by g. We say that ~ is a parabolic 1-cocycle with respect to g. 

Given/3 EAr  and a E 7q (U0), set 

: =  

One easily checks that 5~: 7q(U0) --* V is a parabolic 1-cocycle with respect to 

g~. Moreover, the association 5 H 5Z defines an R-linear map 

�9 (g,/3): gg  , gg , .  

In order to maintain compatibility with our convention of 'acting from the right', 

we write (vi) r for the image of (vi) E Hg under O(g,/3). Using (10) and 

the fact that 5 is a 1-cocycle with respect to g, we get 

(13) 

(Vl, . ,Vr )  ~(g 'e ' )  : (Vl, .,Vi+l, Vi+l(1 -1  . . . .  - gi+lgigi+l) + vigi+l , . . . ,  v~). 

(i+l)t~ entry 

Moreover, we have the 'cocycle rule' 

(14) r O(g~,/3') = O(g,/3/3'). 

(The product on the left hand side of (14) is defined as the function from Hg 

to Hg~, obtained by first applying ~(g,/3) and then O(g~,/3').) 
The submodule 

Eg := {(v. (gl - 1 ) , . . . , v .  (g~ - 1) iv �9 V} 

of Hg corresponds to 1-cocycles 6 which are coboundaries. It is easy to see that 
O(g,/3) maps Eg into Eg~ and therefore induces an isomorphism 

r Wg := Hg/Eg ~, Wg,.  

One can compute ~(g, fl) explicitly for all/3 �9 Ar using (13) and (14), pro- 

vided that/3 is given as a word in the standard generators/3i. Moreover, this 
computation can easily be implemented on a computer. 

Given g �9 g~ and h �9 GL(V), we set 

gh := ( h - l g l h , . . . ,  h-lgrh),  

and we define an isomorphism 

�9 (g, h): { Hgh ~, Hg 
(vl, . . . ,v~) , , ( v l . h , . . . , v r . h ) .  

It is clear that kV(g, h) maps Egh to Eg and therefore induces an isomorphism 

h): 
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2.3 EXPLICIT COMPUTATION OF THE MONODROMY. Let us go back to the 

situation of w we are given an r-configuration (X, D) over a connected com- 

plex manifold S. We have also chosen a base point so E S. As usual, we set 

U := X - D, and denote by U0 the fiber of U -~ S over so. 

Definition 2.4: An affine f r a m e  for the configuration (X, D) is an isomorphism 

of complex manifolds A: X ~ 17~, compatible with the projection to S, such that  

A(D) either contains or is disjoint from {co} • S. 

In this subsection, we shall assume that  there exists an affine frame for (X, D), 

and we use it to identify X with ]?~. We remark that  there exist configurations 

(Z, D) which do not admit an affine frame (e.g. because X ~ ]P~). It seems, 

however, that  such examples have no practical relevance for the problems this 

paper is about. 

By the nature of Definition 2.4, there are two cases to consider. Suppose 

first that  D is disjoint from {co} x S. Then D gives rise to a map p: S --* Or 

which sends s E S to the fiber of D C A~ ~ S over s. Set Do := p(so) C C. 

Choose a marking ~; of (P~, Do). We will use ~ to identify the fundamental 

group ~rl(Or, Do) with the Artin braid group At, as in the previous subsection. 

Let ~: 7h(S, s0) ~ Ar denote the group homomorphism induced by p. The 

exact sequence 

(15) 1 "-'+ 71l(Vo, 00) --------4 71I(U , ((20,80)) ) T I ( S ,  s0) --+ 1 

of the fibration U ~ S can be identified with the pullback of the sequence 

(9) along ~. Using the splitting of (15) coming from the co-section, we will 

consider 7rl (S) as a subgroup of r l  (U). By construction, the action of ~rl(S) on 

7rl(Uo, co) factors through the map ~ and is given by the formulas (10). 

Now suppose that  D contains the section {co} x S. We denote by lh(Uo, co) 

the fundamental group of U0 with co as 'tangential base point'. More precisely, 

consider subsets of Uo C C of the form ~4 = {z E C I I z] > t, z • ( -co ,  0)}, for 

t >> 0. The fundamental group ~h(Uo, f~t) is independent of t, up to canonical 

isomorphism, so we may define ~rl(U0, co) := limlh(U0, fit). With this conven- 

tion, the sequence (15) is still well defined and admits a canonical section. In 

fact, the fibration U ~ S admits a section ~: S ~ U, unique up to homotopy, 

such that  for all s E S we have ~(s) E f~t C Us, for some t > 0. As in the first 

case, we will identify ~h (S) with the image of this section. 

The H u r w i t z  b ra id  g r o u p  B~ is defined as the fundamental group of the 

set 

L(~ = {D C P~ t IDI = r}, 
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with base point Do. The natural map Or ~ / d r  identifies Br with the quotient 

of Ar by the relation 

~]1~2""" ~r2-1 "'" ~2~1 = 1. 

The configuration (X, D) induces a map p: S ~ b/r and a homomorphism 

~: ~rl (S) --+ Br. If {o0} x S C D, then the image of ~ is contained in the 

subgroup of Br generated by the first r - 2  standard braids/31,. �9 �9 j3r-2, which is 

isomorphic to At-1. Moreover, just as in the first case, the action of Irl (S, So) on 

7h (U0, oc) by conjugation factors through the map ~ and is given by the formulas 

(10). From now on, we will treat both cases of Definition 2.4 simultaneously. 

Let V0 be a local system of free R-modules on Uo = ]71 (C) -Do ,  corresponding 

to a representation P0: 7rl(U0) ~ GL(V). A variation of 12o over S corresponds, 

by definition, to a representation p: 1h (U) --+ GL(V) whose restriction to 7h (U0) 

equals P0. Obviously, p is uniquely determined by its restriction to 7r1(S), which 

we denote by X: 7r1(S) --~ GL(V). Then 

(16) po(')'aV -1) = X(~/)po(a)X(~/) -1 

holds for all a C 71"l(Uo) and ~ C 7r1(S). With g C Cr corresponding to P0 (via 
the choice of the marking n), this is equivalent to 

(17) g~(7) = gX(7) -1. 

Let W be the parabolic cohomology of ]) and ~: 7h (S) -~ GL(Wg) the corre- 

sponding representation (here we identify the fiber of W at so with the R-module 
Wg = Hg/Eg, see the previous subsection). 

THEOaEM 2.5: For all 7 C 7h(S) we have 

~7(V) = ~(g, qo(V)) �9 ~(g, X(V)), 

where Wg Wg, and Wgh are the isomorphism  
defined in w 

Proof: Straightforward, using Lemma 2.2, the definition of (~(g, fl) and ~(g, h), 

and (17). | 

Remark 2.6: Consider the case where D contains the section oc x S. Using 

similar arguments as above one can show that for any choice of base point of Uo 

(not necessarily the tangential base point oo) one obtains a splitting of Sequence 

(15) which is compatible with the map to the sequence corresponding to (9). 
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(For fibrations of plane curve complement this is made explicit in [8], Thm. 2.2.) 

In this situation, the statement of Theorem 2.5 carries over verbatim. 

3. l~tale local  s y s t e m s  

We transfer the situation considered in the first two sections into the @tale world, 

and we state a comparison theorem. We also prove a theorem which is useful 

to bound the field of linear moduli of an (@tale) local system obtained as the 

parabolic cohomology of a variation. 

3.1 RECALL. In this section, we fix a prime number l and a finite extension 

K/Q1. We denote by R one of the following rings: (a) R :-- K,  (b) R := OK, 

the ring of integers of K,  or (c) R := Og/g  m, where t? is the prime ideal of OK. 

Let k be a field of characteristic 0 and X a smooth, geometrically irreducible 

scheme over k. Also, let x: Speck ~ X be a geometric point. We denote by 

7I" I ( X )  ----- 71" I ( X ,  X) the algebraic fundamental group of X with base point x. 

An @tale local  s y s t e m  )2 of R-modules on X is, by definition, a locally con- 
stant and constructible sheaf of R-modules [19] whose stalks are free R-modules 

of finite rank. In case R = K,  this is also called a lisse t - ad ic  s h e a f  [15]. It is 

a standard fact that  ~ corresponds to a continuous representation 

p: 7rl(X,x) , GL(V), 

where V := 12x is the stalk of 13 at x. 

Now suppose that  k C C is a subfield of the complex numbers. The set of C- 

rational points of X has a canonical structure of a complex manifold, which we 

denote by X ~n. Moreover, there is a functor 5 r ~ ~'an from sheaves (of abelian 

groups) on X@t to sheaves on X ~", called a n a l y t i f i c a t i o n  (see e.g. [13], w If 

1, ~ is an @tale local system on X corresponding to a representation p: 7rl(X, x) 

GL(V), then the analytification ~2 an of l) is the local system corresponding to 

the composition of p with the natural homomorphism 7r~~ ~n, x) + 7rl (X, x). 

3.2  PARABOLIC COHOMOLOGY OF AN I~TALE LOCAL SYSTEM. Let k be a field 

of characteristic 0 and let S be a smooth, affine and geometrically connected 

variety over k. Let (X, D) be an r-configuration over S. By this we mean that  

~: X ~ S is a proper smooth curve of genus 0 and D c X is a smooth relative 

divisor of relative degree r (compare with w We denote by j :  U := X -  D 

X the inclusion and by 7r: U ~ S the natural projection. We fix a k-rational 

point So on S as a base point. We write Uo := 7r-l(so) for the fiber of 7r over 

so and we choose a geometric point x0: Speck --+ Uo as base point. 
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Definition 3.1: Let V0 be an ~tale local system of R-modules on U0. A 

var ia t ion of V0 over S is an 5tale local system V on U whose restriction to 

U0 is equal to V0. The parabol ic  cohomology  of the variation V is the sheaf 

of R-modules on Sat 

W := R I ~ , ( j , V ) .  

See [19]. 

THEOREM 3.2: Suppose that k C C. 

(i) W is an dtale local sys tem of  R-modules. 

(ii) There is a natural isomorphism of local systems of  R-modules  on X an 

wan ~ )R l~ - , ( j ,  van), 

functorial in V. 

Proof: Using standard arguments (see e.g. [13], w one reduces the claim 

to the case R = O g / g  m. Let $" be a constructible sheaf of R-modules on X. 

By the comparison theorem between 6tale and singular cohomology there is a 

natural isomorphism of sheaves on S an 

(Rl~-,~-)an ~) Rlff,(.T-an). 

(See e.g. [13], Theorem 11.6, for the case where k = C. The general case follows 

immediately, using the Proper Base Change Theorem, [13], Theorem 6.1.) It is 

easy to see (e.g. using [13], Proposition 11.4) that (j,V) a" = j,(van). Therefore, 

Part (ii) of the theorem follows from the comparison theorem. By [13], Theorem 

8.10, the sheaf W = RI~,( j ,V)  is constructible. But we have just proved that 

W an is locally constant, which shows that W is locally constant as well. This 

finishes the proof of the theorem. | 

Remark 3.3: For us, the important consequence of Theorem 3.2 is that we 

can compute the geometric monodromy of W using the methods of the pre- 

vious section. Let us make this point more explicit. In the situation intro- 

duced above, let p: 7rl(U, x0) ~ GL(V) denote the representation of the alge- 

braic fundamental group of U corresponding to the ~tale local system P. Let 
pgeo: 7rl(Ufc,x0) ~ GL(V) (resp. ptOp: 7i.tlOP(uan,x0) ....+ GL(V)) denote the re- 

striction of p to the geometric (resp. to the topological) fundamental group. We 

remark that p and pgeo are continuous morphisms of profinite groups, whereas 

fltop is simply a group homomorphism. Furthermore, pgeo is uniquely deter- 

mined by ptOp because ~rl(U~, x0) is the profinite completion of 7rtt~ an, x0). 
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By Part (i) of Theorem 3.2, the parabolic cohomology )42 of V corresponds to 

a representation ~?: ~1(S) -~ GL(W). Let /]geo and ?~top be its geometric and 

topological version. Then Part (ii) of Theorem 3.2 says that  we have two ways 

to describe ytop: (a) as the restriction of ~? to 7rtl~ and (b) as the mon- 

odromy representation of ~tl~ (S an) on the singular parabolic cohomology of the 

local system )2 an (which can be computed using Theorem 2.5). 

3.3 THE FIELD OF LINEAR MODULI. The results of this subsection will not 

be used in the rest of this paper. As in the previous subsection, S denotes a 

smooth and geometrically connected k-variety and (X, D) an r-configuration 

over S. We assume that  k C C and denote by k the algebraic closure of k inside 

C. 

Unlike in the previous subsection, )20 is now an ~tale local system of R- 

modules on the geometric fibre U0, ~ := Uo | fr and )2 denotes a variation of )20 

over S~ := S | k. Let W be the parabolic cohomology of )2. By construction, 

}IV is an dtale local system of R-modules on S~. For a C Gal(k/k),  we denote 

by avo: U0]r -% U0,~ the semi-linear automorphism corresponding to a and the 

k-model Uo. The twis t  of  )20 by  a (with respect to the k-model U0) is the 

~tale local system )2~ := 5~o)20. 

Definition 3.4: We say that  k is a field of  l inear  m o d u l i  for Vo if the ~tale 

local system V~ is isomorphic to ]20, for all a E Gal(k/k). We say that  k is a 

field of  p ro j ec t i ve  m o d u l i  for )20 if for all a E Gal(k/k) there exists an ~tale 

local system s of rank one such that  )2~" -~ V0 | s Similarly, one defines 

the notion of 'field of linear/projective moduli' for the local systems )2 and 14;. 

THEOREM 3.5: 

(i) I l k  is a field of linear moduli for V, then it is also a field of linear moduli 

for W.  

(ii) Suppose that R -- OK or R = K ,  and that )2o is irreducible. Then i f  k is 

a field of projective moduli for )2o, it is also a field of projective moduli for 

W. Moreover, the projective representation Age~ ~rl(S~) --+ PGL(W) as- 

sociated to W extends to a projective representation A: ~rl(S) --* PGL(W).  

Proof: Let a E Fk0 with V ~ ~ V. Using the Proper Base Change Theorem we 

get 

w = = W .  

This proves (i). The proof of (ii) is a combination of the preceding argument 

and Remark 2.3 (iii). | 
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Remark  3.6: Theorem 3.5 can be used to give a new proof of the main result 

of [27] (which essentially states that  the braid companion functor preserves the 

field of linear moduli). In the rest of the paper, we will not use Theorem 3.5 

and we will not need the concept 'field of linear moduli'. The point is that  in 

our main example in w the variation )2 is already known to be defined over 

Q, which means that  the resulting local system 14; is defined over Q as well, by 

construction. In fact, this seems to be the case for all known applications of 

these and similar methods to the Regular Inverse Galois Problem. Nevertheless, 

the authors think that  Theorem 3.5 may be useful for future applications. 

4. Loc a l  s y s t e m s  on  H u r w i t z  spaces  

A finite Galois cover f :  Y ~ F 1 together with a representation G r GLn(K)  

of its Galois group corresponds to a local system on F1 with finite monodromy. 

Therefore, a representation G ~ GLn(K)  gives rise to a variation of local 

systems on a certain Hurwitz space H. Since Hurwitz spaces are algebraic 

varieties, the parabolic cohomology of this variation corresponds to a Galois 

representation of the function field of H.  In case H is a rational variety, this 

has potential applications to the Regular Inverse Galois Problem. 

A special case of this construction is discussed in Section 5. In the present 

section, we give an outline of the general construction. We do not, however, 

work in the greatest possible generality. 

4.1. In this section we fix a finite group G and an integer r _> 3. The letter S 

will always denote a scheme over Spec(Q). 

Definition 4.1: Let X ~ S be a smooth projective curve of genus 0. A G- 

cove r  o f  X w i t h  r b r a n c h  p o i n t s  is a finite morphism f :  Y ~ X,  together 

with an isomorphism G TM A u t ( Y / X ) ,  such that  the following holds. First, f 

is tamely ramified along a smooth relative divisor D C X with constant degree 

r = deg (D/S ) ,  and ~tale over U := X - D. Second, for each geometric point 

s : Speck ~ S, the pullback fs: Ys ~ Xs  is a G-Galois cover branched at 

Ds := D N Xs  (in particular, Ys is connected). Let X1 ~ S and )(2 ~ S 

be two curves of genus 0 over S and f l :  Y1 ~ X1 and f2:Y2 ~ )(2 two G- 

covers with r branch points. We say that  f l  and f2 are i s o m o r p h i c  if there 

exists isomorphism of S-schemes r X1 -~ X2 and a G-equivariant isomorphism 

r Y1 -~ ]I2 such that  r o f l  -- f2 o r 

By the result of [14], [4] and [28], there exists a certain Q-scheme, denoted by 



174 M. DETTWEILER AND S. WEWERS Isr. J. Math. 

which is a coarse moduli space for G-Galois covers of curves of genus 0 with 

r branch points. In particular, to each G-Galois cover f :  Y ~ X of a genus 

zero curve X over a Q-scheme S, we can associate a map ~i :  S ~ Hred(G), 

called the c lass i fy ing  m a p  for f .  The association f ~ ~ /  is functorial in S. 

For S = Spec k, where k is an algebraically closed field of characteristic 0, it 

induces a bijection between isomorphism classes of G-covers of curves of genus 

0 with r branch points, defined over k, and k-rational points on Hred(G). The 

scheme Hred(G) is called the r e d u c e d  i n n e r  H u r w i t z  space.  It is a normal 

and affine variety over Q, of dimension r - 3. We point out that  H~ed(G) is in 

general not geometrically connected. 

Set H := H~ed(G). A ve r sa l  f ami ly  over H is a G-cover f :  Y ~ X defined 

over a Q-scheme S such that  S is normal and the classifying map ~f:  S ~ H is 

finite, flat and generically @tale. A versal family f is said to cove r  the Hurwitz 

space H if the classifying map ~I  is surjective onto H. The cover f is called 

u n i v e r s a l  if, moreover, for every S-scheme T the pullback map induced by 

f (from Horn(T, S) to the set of isomorphism classes of G-covers defined over 

T) is an isomorphism. Note that  the classifying map of a universal family is 

automatically an isomorphism. 

For every G and r there always exists a versal family of G-covers which covers 

the Hurwitz space H.  However, a universal family exists only under certain extra 

assumptions. 

4.2. Let us now fix the following objects: 

�9 a versal family f :  Y ~ X of G-covers with r branch points, defined over 

a connected and normal Q-scheme S, and 

�9 a faithful and irreducible linear representation G ~-~ GLn(K) ,  with 

coefficients in a number field K.  

Let k be the field of definition of S, i.e. the integral closure of Q in the function 

field of S. Then k is number field and S is a geometrically irreducible k-variety. 

Choose an integer N such that  G c GL,~(K) is contained in GL~(R), where 

R =  (9K[1/N]. Let D C X be the branch locus o f f :  Y ~ X,  and set U : =  

X - D. The G-cover f :  Y ~ X gives rise to a surjective group homomorphism 

7rl (U) ~ G. We denote by 

p: 7rl(U) ~ GLn(R) 

the composition of this homomorphism with the injection G ~ GLn(R). 

We shall write pgeO: 7rl(U(~) ~ GLn(R) (resp. ptOp: 1r[op(uc) ~ GLn(R)) 

for the restriction of p to the geometric fundamental group of U (resp. to the 
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topological fundamental group of the analytic space associated to U). Let V an 

denote the local system of R-modules on Uc corresponding to D t~ Also, let 

W an : :  RI# . ( j .V  an) 

be the parabolic cohomology of V an. Recall that W an is a local system of 

R-modules corresponding to a representation r/t~ 7r~~ ~ GL(W). 

On the other hand, for each prime ideal p of K which is prime to N we let 

pp: 71l(U) , GLn(Op) 

denote the p-adic representation induced by p. It corresponds to an @tale local 

system Yp of Op-modules on U. Again we can form the (parabolic) higher direct 

image of Vp, 
lA)p := Rl~,(j,12p), 

which is an @tale local system of Op-modules, corresponding to a representation 

r/p: ~rl(S) --* GL(Wp). It follows from Theorem 3.2 (see also Remark 3.3) that 

there is a canonical isomorphism Wp ~- W| such that the following diagram 

commutes: 
~top 

top 7r I (Sc) �9 GL(W) 

7q(S) ~P- GL(Wp). 

geo In particular, the image of r/p is equal to the topological closure of the image 
of r/top. 

Remark 4.2: 
(i) Let s E S(k) be a k-rational point. The fiber of 142p at x corresponds to 

a continuous Galois representation r/~,p: Gal(k/k) ~ GL(Wp). One can 

show that the family (r/x,p)p forms a strictly compatible system of Galois 
representations of weight one (see [9], Proposition 5.4.5 for a more general 

statement). 

(ii) Fix p and suppose that S is a rational variety over k. In many cases 

one can use Hilbert's Irreducibility theorem to conclude that there exists 

infinitely many k-rational points x E S(k) such that the image of the 

Galois representation r/x,p contains the image of the geometric monodromy 

geo (which is independent of x and can in principal be representation r/p 

calculated by the methods of Section 2). See Section 5 for an example of 

this phenomenon. 
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4.3. In the context of the Inverse Galois Problem, Remark 4.2 shows that  it 

is desirable to produce examples of versal families of G-covers defined over a 

(~-rational variety S, and to compute the image of the geometric monodromy 

r ep re sen t a t i on  ?7 ge~ explicitly. The basic tool for doing this is, as in Section 

2, the braid action. To simplify the exposition, and because this is the only 

case that  we will need later on, we assume (after the next two paragraphs) that  

r = 4 .  

With G and r as before, set 

Er(G) := {g = (g l , . . . , g r )  igi # 1, G = {gi} , I Ig i  = 1}. 
i 

An element g of this set is called a g e n e r a t i n g  s y s t e m  of length r for the 

group G. The group G acts on the set $r(G) by simultaneous conjugation. We 

write Nit(G) for the sets of orbits of this action. Elements of Ni~(G) are called 

Nie l sen  classes and written as [g], with g E s 

The Artin braid group A~ acts on the set $~(G) from the right, in a standard 

way; see (12). This action extends to an action of its quotient Br, the Hur- 

witz braid group. By abuse of notation, we denote the image of the standard 

generator/3i C A~ in Br by the same name. 

From now on, we assume that  r = 4. The elements/31t331 and (/31/32133 ) 2 

generate a normal subgroup Q <1 B4, isomorphic to the Klein 4-group. The 

quotient/~4 := B4/Q is called the m a p p i n g  class group.  The set of Q-orbits 

of Ni4(G) is denoted by NiXed(G). Elements of this set are called r e d u c e d  

Nie l sen  classes, and are written as [g]red. The action of B4 on Nia(G) descends 

to an action of the mapping class group/~4 on Nixed(G). 

Let C = (C1, . . . ,  C4) be an ordered r-tuple of conjugacy classes of the group 

G. We say that  g E Ca(G) has t y p e  C if there exist an integer n, prime to the 

order of G, and a permutation a c Sa such that  g~ E Ca(0 for i = 1 , . . . ,  r. The 

subset of 84(G) of all elements of type C is denoted by 8(C).  We also obtain 

subsets Ni(C) C Ni4(G) and Nired(c) C NiXed(G). 

In the case r = 4, the variety H~ed(G) is a smooth affine curve, equipped with 

a finite flat cover 

j:  H~ed(G) -----* A~, 

which is ramified at most at 0, 1728 and ~tale over A~ - {0, 1728}. The map 

j is characterized by the following property. Let t: Speck --* H~ed(c) be a 

geometric point, corresponding to a G-cover f :  Y --* X with branch locus 

D = { x l , . . . ,  x4}. Then j(t) E k is the j-invariant of the configuration (X, D). 
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Let Xl , . . . ,x4  E C be four distinct complex numbers. Set Xo := P~ and 

Do := {Xl,...  ,x4} C Xo. Let Zo E • denote the j-invariant of the configu- 

ration (P~, Do). We assume that Zo # 0, 1728. After choosing a marking 

of (Xo, Do), we obtain a presentation of 7h (Uo) with generators a l , . . . ,  a4 and 

relation I-[i a i  = 1. This presentation yields a bijection 

(18) j - l (z0)  ~ NiXed(G). 

(Recall that the left hand side of (18) may be identified with the set of iso- 

morphism classes of G-covers of X0 with branch locus Do.) The fundamental 

group of C - {0, 1728} acts on the left hand side of (18), and the mapping class 

group /)4 acts on the right hand side. There is a natural identification of these 

two groups which makes the bijection (18) equivariant. In particular, we ob- 

tain a bijection between the set of connected components of H~ed(G)c and the 

/)4-orbits of NiXed(G). 

4.4. We can now use the results of w to determine the image of ?7 t ~  . We 

will use the notation introduced in the previous subsection, with the following 

difference. Since we will be working exclusively with complex analytic spaces, 

we will omit the index ( )c. For instance, we write S instead of So, etc. 

Choose a point so E S with j ( s o )  = zo and let (X0, Do) denote the fibre 
Atop. top of the configuration (X,D) over So. Let Po �9 7q ( U o , x o )  ~ GL~(R) denote 

top/T r top the restriction of prop to the subgroup "1 ~t~0,x0) C 7 h (U, x0), and set gi  = 

p o ( a i )  E G .  By construction, the tuple g := (gi) is a generating system for G, 

and the reduced Nielsen class of g is an element of the/)a-orbit O. Moreover, 
[g]red is stabilized by the image of the group homomorphism 

~: 71"~~ 80) ) /)4, 

which is induced by the configuration (X, D) over S. 

For simplicity, we also assume that the configuration (X, D) admits an affine 

frame (Definition 2.4), which we use to identify X with P~. This assumption 

will be satisfied in our main example. Note also that (at least in the situation 

where S is one-dimensional) there always exists an affine frame over a dense 

open subset of S. 

The oc-section defines a section of the natural projection 7/'tl~ ~ 71"tl~ 
We identify Irtl~ with the image of this section. Let X: 7rtl~ -+ G denote 

the restriction of p to 7r~~ Essentially by definition, we have 

(19) g~(7) = gX(7) -~, 
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for all 7 E ~h(S); compare with (17). It follows from Theorem 2.5 that 

(20) U(7) = ~(g,  ~(V)) ' ~(g,  X(7)), 

for all "y C ~tl~ ). Here ~(g,/3) and ~ (g ,h )  are as in w Therefore, if we 

know r and X explicitly, we can also compute ?]top. 

Remark 4.3: In practice, it is not always so easy to describe an affine frame 

X ~ P~ and the induced lift ~ of ~ explicitly. In many cases, this is possible, 

using the methods of [6]. However, for applications to the Regular Inverse 

Galois Problem, it is usually sufficient to determine the image of the projective 

representation associated to  ?]top, and one can proceed as follows. 
top Let ~: 7r x (S, so) -~ Aa and X: 7h(S, so) ~ G be any pair of group homomor- 

phisms such that ~ is a lift of ~ and such that (19) holds. (Using the fact that  

7rtl~ So) is a free group, it is easy to see that  such a pair always exists.) The 

choice of (~, X) determines a representation p': 7rtl~ ~ GLn(R) extending 

P0; it corresponds to a variation ))' of V~ n. Let ?]': ~tl~ , so) ~ GL(Wg) be the 

representation corresponding to the parabolic cohomology of ] / .  By Remark 

2.3 (iii), the projective representations associated to  ?]top and ?]~ are equal. See 

the next section, in particular w 

5. An example 

We work out one particular example of the construction described in the last 

section. In this example, the Hurwitz space is a rational curve. As a result, we 

obtain regular realizations over Q(t) of certain simple groups PSL2(Fp2). 

5.1. Let G := PSL2(7) • Z/3Z. Given a conjugacy class C of elements of the 

group PSL2(7), we denote by Ci the conjugacy class of (g,i) in G, where g C C 

and i E Z/3Z. The conjugacy classes of PSL2(7) are denoted in the standard 

way (see [1]). For instance, 2a is the unique class of elements of PSL2(7) of 

order 2, and 2ai is the class of (g, i), with g C 2a. Set 

C :--- (2a0, 2a0, 3al, 3a2). 

A computer calculation shows that the set Nired(c) has 90 elements and that 

the mapping class group/~4 acts transitively. Since C is rational (in the sense 

of [25]), the connected component S := Hred(c)  of the Hurwitz space H~ed(G) 

corresponding to this orbit is defined over Q. So S is a smooth, affine and 

absolutely irreducible curve over Q. Furthermore, our explicit knowledge of the 
braid action on Nired(c) can be used to show that the complete model S of S 

has genus 0 
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LEMMA 5.1: 

(i) The curve S is isomorphic to a dense open subset o f ~ .  

(ii) There exists a versal G-Galois cover f: Y ~ X over S. 
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Proof'. We have to show that  S' ~ ~ .  Since S has genus 0, it is well known 

that  it suffices to find a Q-rational effective divisor of odd degree on S. The 

description of the covering j: Sc ~ C in terms of the braid action shows that  

the set of cusps (i.e. the points of S - S) is such a divisor, of degree 17. This 

finishes the proof of (i). 

Let s = Speck ~ S be a geometric point of S and denote by fs: Ys ~ Xs the 

G-cover of type C corresponding to s. Let x l , . . . ,  x4 denote the branch points 

of fs, ordered in such a way that  xi corresponds to the conjugacy class Ci. By 

definition, we have an injection G ~-~ Autk (Ys). We claim that  the centralizer of 

G inside Autk (Ys) is equal to the center of G (which is cyclic of order 3). Indeed, 

suppose that  a: Y~ -% Y~ is an automorphism which centralizes the action of 

G. The automorphism a/: X~ -% Xs induced by a fixes the set {xl,x2} and 

the branch points x3 and x4. If a ~ were nontrivial, it would be of order 2, and 

there would exist a reduced Nielsen class [g]red C Ni red (C) which is fixed by the 

element/~1~2/~1 C/~a. However, one checks that  such a Nielsen class does not 

exist, so a I is the identity. This proves the claim. 

The claim implies that  for any G-cover f :  Y ~ X over a scheme T whose 

classifying morphism ~f:  T ~ Ha(G) has its image contained in S, the auto- 

morphism group of f is canonically isomorphic to the center of G. It is shown 

in [28] that  the category of all (families of) G-covers of type C is a gerbe over 

the Hurwitz space S = H(C).  In our case, the band of this gerbe is simply the 

constant group scheme Z/3Z. By general results on non-abelian cohomology, 

the gerbe is represented by a class w in H2(S,Z/3Z), and the existence of a 

global section (i.e. the neutrality of the gerbe) is equivalent to the vanishing of 

w. See also [3]. 

Let K denote the function field of S. By (i), K = Q(t) is a rational function 

field. Since S is affine, we may regard w as an element of the Galois cohomology 

group H2(K, Z/3Z). We can give a more concrete description of w, as follows. 

Let fR: YK ~ X~: denote the G-cover of type C corresponding to the generic 

geometric point Spec/~ -~ S. For a E Gal ( /~ /g ) ,  let f~: denote the conjugate 

G-cover. By definition of the field K,  the cover f~: is isomorphic to fR, i.e. 
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there exists a commutative diagram 

XR ~ a > X R, 

where r and ~ are/~-linear isomorphisms and r is also G-equivariant. Note 

that  r is not uniquely determined by a: we may compose it with an element of 

the center of G. However, ~ is uniquely determined by a and therefore satisfies 

the obvious cocycle relation. We conclude that  there exists a (unique) model XK 

of X R over K such that  ~ is determined by the isomorphism X R ~- XK | K, 

in the obvious way. In the language of [2], we obtain the following result. The 

field of moduli of the G-cover fR with respect to the extension K / K  and the 

model XK of X R is equal to K.  Moreover, the class w C H2(K,Z/3Z) is the 

obstruction for K to be a field of definition. 

The curve XK is isomorphic to the projective line over K if and only if it 

has a K-rational point. Moreover, there exists a quadratic extension L/K  such 

that XL :~- X K  | L has an L-rational point and is isomorphic to P~. It follows 

from a theorem of D~bes and Douai [2] that  L is a field of definition of fR (here 

we use that  the center of G is a direct summand of G). In other words, the 

restriction of w to L vanishes. But by [20], Chap. 1.2, Prop. 9, the restriction 

map H2(K, Z/3Z) --* H2(L, Z/3Z) is an isomorphism. We conclude that  w = O, 

which finishes the proof of the proposition. | 

Remark 5.2: The lemma shows that  there exist infinitely many non-isomorphic 

G-covers f0:Y0 ~ X0 defined over Q. However, we do not know whether we can 

find any such G-cover with X0 -~ P~. So we do not know whether the lemma 

produces any regular realizations of the group G over Q(t). 

5.2. Let g E g(C) be any generating system of type C; for instance, we could 

take 

g := ((1, 2)(3, 4)(5, 8)(6, 7), (1, 6)(2, 5)(3, 7)(4, 8), 
(1, 3, 8)(4, 5, 7)(9, 11, 10), (1, 3, 7)(2, 8, 6)(9, 10, 11)) 

(here we have chosen a faithful permutation representation G "--+ $11). The 

group G admits a faithful and absolutely irreducible linear representation of 

dimension 3, defined over the number field K := Q(~z-~, x/z~). This represen- 

tation is already defined over R := OK[I/7!]. From now on, we will consider G 
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as a subgroup of GL3(R). Note that the matrices gl, 92 are conjugate to the di- 

agonal matrix diag(1, 1,-1),  and that g3 (resp. g4) is conjugate to diag(1, 1, w) 

(resp. diag(1, 1,w2)), with w := (-1 + x/Z3)/2. Therefore, Remark 1.3 shows 

that the R-module Wg defined in w is locally free of rank 2. 

We can now apply the construction of w to the versal G-cover f: Y ~ X of 

Lemma 5.1. In particular, for each prime ideal p of K with residue characteristic 

p >__ 11, we obtain a representation 

zip: 7rl(S, s0) , GL2(Op). 

geo We let Up denote the restriction of ~p to the geometric fundamental group 

~h (S(~). We write Ap and A~ e~ for the induced projective representations. We 
geo (resp. Age~ say that ~/p (resp. Ap) is regular  if it has the same image as ~/p 

THEOREM 5.3: Suppose that p > 7 is not totally split in the extension K/Q. 

Then Ap is regular and has image PSL2(Op). 

Before we give the proof of this theorem, let us mention the following 

immediate corollary. 

COROLLARY 5.4: The simple groups PSL2(p 2) admit regular realizations over 

Q(t), forp ~ 1,4, 16mod21. 

Note that regular realizations of PSL2(p 2) are already known for p < 7. If p 

is congruent to 1, 4 or 16 modulo 21, then our construction gives a nonregular 

Galois extension of Q(t) with group PGL2 (p). 

5.3. We now give the proof of Theorem 5.3. Set F := rtl~ so); the first 
step in the proof of Theorem 5.3 is to determine the image of the projective 
representation At~ F ~ PGL(Wg) associated to r/t~ F ~ GL(Wg). Since 

S is isomorphic to the Riemann sphere minus 17 points, there exist generators 

71,... ,717 of F, subject to the relation Hj 7j = 1. Our strategy is to explicitly 

compute the image of Vj in PGL(Wg), for a certain choice of the generators 7j. 

Let qh: F --*/~a be the group homomorphism induced from the branch locus 

configuration (X, D) of the versal G-cover f: Y ~ X. By construction, there 

exists a reduced Nielsen class in Nired(c) which is stabilized by the image of 

~. Since the action of/~4 on Nired(c) is transitive, we may normalize things in 

such a way that the class [g]red of our originally chosen tuple g is stabilized by 

~(F). It is well known (see e.g. [4]) that there exist generators 50, 5~, 81728 of 

7r~~ - {0, 1728}), with relation 505o~5172s = 1, which are mapped to ~1fl2, fll 

and/~1/32/31, under the natural map 

- {o ,  1 7 2 8 } ) . ,  
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Let F' C 7rtl~ - {0, 1728}) be the inverse image of the stabilizer of the re- 

duced Nielsen class [g]red. We may identify F t with the fundamental group of 

S t := j - l ( C  - {0, 1728}) c S. It is a straightforward, although combinatorially 

involved problem to write down a list of generators of the free group F t, given as 

words in the generators 5. Moreover, one can choose these generators in such a 

way that  the usual product-1 relation holds and that  each of them represents a 

simple closed loop around one of the points missing from S I. Let 71 , . . . ,  717 C F 

be those generators representing a loop around a cusp (i.e. a point s C S with 

j(s) = c~). Note that  7j is conjugate (inside the g r o u p  71-~~ - {0, 1728})) to 

a certain power of 5~. The other generators, representing a loop around one 

of the points of S - S/, are conjugate either to 53 or to 5272s, so their image in 

/34 is 1. It follows that  the map F ~ ~ /3a factors over the natural, surjective 

map F ~ ~ F. Denoting the image of 7j in F by the same name, we have found 

explicit generators ff l , . . . ,717 of F, with relation 1-Ij 7j = 1, and their images 

under the map ~: F ~ / 3 4 .  

It is easy to find, for all j = 1 , . . . ,  17, an element 73 E A4 which lifts ~(Tj) 

and an element hj E G such that  

gTj ---- ghj. 

Moreover, we may do this in such a way that  1-[j 73 = 1 and 1-Ij hj = 1. In other 

words, we can choose homomorphisms ~: F ~ A4 and X: F ~ G as in Remark 

4.3. In fact, the lift ~ is unique, because the Klein four group Q acts faithfully 

on Ni(C). On the other hand, X is only determined up to multiplication of 

hj = X(Vj) by a central element of order 3. This corresponds to the fact that  

the versal G-cover f :  Y ~ X over S may be twisted by characters of order 3. 

(It is not clear how to find X corresponding to a versal cover f defined over Q.) 

By formula (20) and Remark 4.3 we have 

?Tt~ ~-~ Cj" ~)(g, ")'j) �9 ~ ( g ,  hj), 

for some scalar cj E K • (In fact, cj is a third root of unity and we have 

1-Ij cj = 1.) Set bj := ~(g,73)" ~(g,  hj). By construction, by is an invertible 

2-by-2 matrix with entries in R such that  [Ij bj -- 1. 
Using a computer program written in GAP, the authors have computed the 

matrices bj explicitly. It turns out that  12 of the bj are transvections and 5 

are homologies with eigenvalues 1, w or 1, w 2, where w denotes a primitive third 

root of unity (see [10] for notation). One finds that  the trace of the matrix 

bib2 is a generator of the extension K/Q.  Moreover, one checks that  for every 
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prime p > 7 one can find a pair of transvections bi, bj whose commutator is not 

congruent to the identity, modulo any prime ideal p above p. This information 

suffices to show that for a prime p > 7 which is not totally split in K / Q ,  the 
geo image of the residual projectivized representation "'v~ge~ associated to ~p is equal 

to PSL2(p 2) (we may identify the residue field of p with Fp2). By a well-known 

argument (see e.g. [21]), it follows that the image of the projective representation 
_geo  "'p~ge~ associated to .qp is equal to PSL2(Op). 

The only thing left to prove is that the image of the full projective represen- 

tation A v is equal to PSL2((.Op) as well. Again, it suffices to show that the image 

of the residual projectivized representation ~p is equal to PSL2(p2). 

One observes that  there are exactly five ramification points s l , . . . ,  s5 E ~' of 

the map j: S ~ IP 1 above cc whose ramification index is equal to 4. One also 

observes that  the matrices bj, corresponding to the points s~ are transvections 

for # = 1, . . .  ,4, whereas bj5 is a homology. It follows that the set { s l , . . .  ,s4} 

is rational, i.e. fixed by the action of Gal (~/Q) .  Furthermore, the transvections 

b ,1 , . . .  , b,4 are all conjugate to each other by elements of SL2(K). One con- 

cludes that the image of these transvections gives rise to conjugate transvections 

in the image of f/~ e~ The conjugacy class of these transvections is a rational 

class, in the sense of [25]. 

Suppose that there exists an element a E Gal(Q/Q) and a lift (~ E 7rl (S) of a 

such that s (c~) E GL2 (p2) does not lie in SL2(p2)Z(GL2 (p2)). Using the branch 

cycle argument (as in the proof of [27], Corollary 4.6), one would conclude that 

a does not fix the set {Sl , . . . , s4} .  But this would be a contradiction to the 
assertion made above. It follows that the image of ~p is equal to PSL2 (p2). The 

proof of Theorem 5.3 is now complete. | 
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